Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants.
نویسندگان
چکیده
For more than a century, the common ancestor of flowering plants was thought to have had a seven-celled, eight-nucleate Polygonum-type female gametophyte. It is now evident that not one, but in fact three, patterns of female gametophyte development and mature structure characterize the common ancestors of the four most ancient clades of extant angiosperms: Amborella-type, Nuphar/Schisandra-type and Polygonum-type. The Amborella-type female gametophyte is restricted to a single extant species, Amborella trichopoda, and at maturity consists of eight cells and nine nuclei. Development of the Amborella-type gametophyte is essentially identical to the Polygonum-type except that there is an additional and asynchronous cell division at the micropylar pole prior to maturation that produces a third synergid and the egg cell. The Nuphar/Schisandra-type female gametophyte is four-nucleate and four-celled and at maturity contains a typical three-celled egg apparatus and a central cell with a single haploid polar nucleus. This type of gametophyte appears to be universal among extant members of the Nymphaeales (including Hydatellaceae) and Austrobaileyales. Based on explicit reconstruction of character distribution and evolution, the Polygonum-type female gametophyte is certain to be representative of the common ancestors of monocots, eudicots, magnoliids, Ceratophyllaceae, and Chloranthaceae. There are compelling biological reasons to suggest that the four-celled, four-nucleate female gametophyte (as found in Nymphaeales and Austrobaileyales) is ancestral among angiosperms, with transitions to Polygonum-type female gametophytes separately in the Amborellales and in the ancient angiosperm clade that includes all angiosperms except Amborella, Nymphaeales, and Austrobaileyales. Subsequent to the evolution of a seven-celled, eight-nucleate Polygonum-type female gametophyte in the Amborellales, we hypothesize that a peramorphic increase in egg apparatus cell number took place and led to the unique situation in which there are three synergids in Amborella trichopoda.
منابع مشابه
The Amborella genome and the evolution of flowering plants.
Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without e...
متن کاملFemale gamete competition in an ancient angiosperm lineage.
In Trimenia moorei, an extant member of the ancient angiosperm clade Austrobaileyales, we found a remarkable pattern of female gametophyte (egg-producing structure) development that strikingly resembles that of pollen tubes and their intrasexual competition within the maternal pollen tube transmitting tissues of most flowers. In contrast with most other flowering plants, in Trimenia, multiple f...
متن کاملPerspective: the origin of flowering plants and their reproductive biology--a tale of two phylogenies.
Recently, two areas of plant phylogeny have developed in ways that could not have been anticipated, even a few years ago. Among extant seed plants, new phylogenetic hypotheses suggest that Gnetales, a group of nonflowering seed plants widely hypothesized to be the closest extant relatives of angiosperms, may be less closely related to angiosperms than was believed. In addition, recent phylogene...
متن کاملWidespread genome duplications throughout the history of flowering plants.
Genomic comparisons provide evidence for ancient genome-wide duplications in a diverse array of animals and plants. We developed a birth-death model to identify evidence for genome duplication in EST data, and applied a mixture model to estimate the age distribution of paralogous pairs identified in EST sets for species representing the basal-most extant flowering plant lineages. We found evide...
متن کاملNovelties of the flowering plant pollen tube underlie diversification of a key life history stage.
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary labili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2009